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The problem of atmospheric tomography arises in ground-based tele- ‘@ Object
scope imaging with Adaptive Optics (AO), where one aims to physi- ey Sodium Layer
cally correct atmospheric turbulences via deformable mirrors (DM) in """ | """"""""" (90 km)
real-time, i.e. at around 500 Hertz. The optimal shape of the DM is Atmospheric b~ [~Laser

: : Turbulence +——"~——
determined from wavefront measurements of natural guide stars (NGS)
as well as laser guide stars (LGS) and is an ill-posed inverse problem. ' i

Many complex AO systems, such as Multi-Conjugate Adaptive Optics o
(MCAQO), Laser Tomography Adaptive Optics (LTAO) or Multi- SRR
Object Adaptive Optics (MOAQ), depend on a sufficient reconstruc-

tion of the turbulence profiles within the required time frame in order to a}gﬁ'}"rﬁt el %"; {,iﬂf,ﬂt
obtain a good correction. Due to steadily growing telescope sizes, there
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is a strong increase in the computational load for atmospheric recon-  Mirror " H
struction with current methods, first and foremost the matrix-vector- e
multiplication (MVM). Instead of using one big matrix-vector system, WES
one can decouple the problem in 3 steps: [ -" ]4-)

3-step approach[1]:
Solve AO problem sequently:
1. Reconstruct incoming wavefronts from Shack-Hartmann wavefront sensor (WFS) data

2. Atmospheric tomography: Reconstruct atmosphere from wavefronts — Gradient-based method

3. Fitting step: Compute optimal mirror shape(s) from the reconstructed atmosphere
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In the following, we propose a Gradient-based method for the atmospheric tomography. The main goal of this
iterative approach is the comparability with the MVM in quality and a significantly lower computational cost.

LGS deficiencies
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Spot elongation:

SH WES measurements from LGS are affected by spot elongation due to the non-zero
thickness of the sodium layer. Depending on the laser launch position (the LGS height
and the sodium layer) one can model the corresponding covariance matrix for the noise:

exact WES data: sq, = [s,, sq | f__!___: \
noisy WIS data: sig = Sq, + C, !/ 277, with 7 white noise. EpaE # L,..Q
noisy waveront: ¢, = (s, + ') TRy
covariance of noisy wavefront: Cov(gpgg) = ['C,, (T)* Nl
cov(p) = FTCH(FT)T — ﬁn with C, = diag(Cl,, . .., Cag). www.opticsinfobase.org
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Statistics of the atmosphere:

To model the atmosphere, a finite number of layers [ = 1,..., L is used. Each layer can be
described e.g. by the van Karman or the Kolmogorov turbulence model with the covariance

(1)

matrix 5

and the c¢2-profile 7, measuring the turbulence strength of layer [.

Forward operator: using geometric light propagation 1]
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Cone effect: introduce a scaling factor ¢
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A Gradient-based method
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Approach without noise models:
Minimize the least-squares tunctional

J(®) = |[A® — @}z, een — min,
J(®) = —2ATI(p — A<I>)

Approach with noise models:
Minimize the Tikohonov-type tunctional

J((I)) = HA(I) — (’OH%—l =+ O@HCI)H%; — min,
J(®) = —2A'TIC, H(p — A®) + 204C; ' ®

Steepest descent iteration:
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Algorithm 1 Gradient-based method
without noise models

Choose ®.
for:=1,... do
e, =&y,

forg=1,...,G do
residualy = vo, — A, P;
gradienty = (Agq,)*II residualg
r; =1; + L-residualg
g; = g; + gradient,

end for

forg=G+1,.... G+ N do
residualg = pa, — Aq, P;
gradienty = (Agq,)" residualg
ri =1; + L-residualg
g; = g; + gradientg

end for

stepsize = (g7 - g)/(T 1)

D, = P, + stepsize - v - g;

end for

Simulation results

All results below were obtained for the E-ELT on the ESO end-to-end simulator, OCTOPUS.
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