

A FAST RECONSTRUCTION METHOD FOR COMPLEX ADAPTIVE OPTICS SYSTEMS

Daniela Saxenhuber and Ronny Ramlau

http://eso-ao.indmath.uni-linz.ac.at/

daniela.saxenhuber@indmath.uni-linz.ac.at

Industrial Mathematics Institute and Johann Radon Institute for Computational and Applied Mathematics, JKU Linz, Austria

The problem of atmospheric tomography arises in ground-based telescope imaging with Adaptive Optics (AO), where one aims to physically correct atmospheric turbulences via deformable mirrors (DM) in real-time, i.e. at around 500 Hertz. The optimal shape of the DM is Atmospheric determined from wavefront measurements of natural guide stars (NGS) as well as laser guide stars (LGS) and is an ill-posed inverse problem.

Many complex AO systems, such as *Multi-Conjugate Adaptive Optics* (MCAO), Laser Tomography Adaptive Optics (LTAO) or Multi-Object Adaptive Optics (MOAO), depend on a sufficient reconstruction of the turbulence profiles within the required time frame in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the matrix-vectormultiplication (MVM). Instead of using one big matrix-vector system, one can decouple the problem in 3 steps:

3-step approach[1]:

Solve AO problem sequently:

1. Reconstruct incoming wavefronts from Shack-Hartmann wavefront sensor (WFS) data

2. Atmospheric tomography: Reconstruct atmosphere from wavefronts \rightarrow Gradient-based method

3. Fitting step: Compute optimal mirror shape(s) from the reconstructed atmosphere

In the following, we propose a Gradient-based method for the atmospheric tomography. The main goal of this iterative approach is the comparability with the MVM in quality and a significantly lower computational cost.

LGS deficiencies

Statistics of the atmosphere:

To model the atmosphere, a finite number of layers $l = 1, \ldots, L$ is used. Each layer can be described e.g. by the van Karman or the Kolmogorov turbulence model with the covariance matrix $C_{\phi}^{(l)}$ and the c_n^2 -profile γ_l measuring the turbulence strength of layer l.

Cone effect: introduce a scaling factor c_l

$$l_{l} := \begin{cases} 1, & \text{for NGS} \\ 1 - \frac{h_{l}}{h_{LGS}}, & \text{for LGS} \end{cases}$$

 h_{LGS} ... LGS height, i.e. 90km

With NGS only a low sky coverage can be reached, thus, artificial LGS are created with laser beacons. LGS suffer compared to NGS from cone effect, tip/tilt indetermination and spot elongation

Tip-tilt indetermination:

• Tip/tilt components are wrongly measured in a SH WFS • remove wrong tip/tilt from incoming LGS wavefronts • Tip/tilt removal operator: $\mathbf{\Pi} = (\underbrace{\Pi, \dots, \Pi}_{G \times}, \underbrace{Id, \dots, Id}_{N \times})$ • $\Pi \varphi_{\alpha_a}(r) = \varphi_{\alpha_a}(r) - x \cdot t^x - y \cdot t^y$

Gradient tilt:

Zernike tilt:

$$\begin{split} t^{x} &= \frac{1}{|\Omega_{D}|} \int_{\Omega_{D}} \frac{\partial}{\partial x} \varphi_{\alpha_{g}}(x, y) d(x, y) \\ t^{y} &= \frac{1}{|\Omega_{D}|} \int_{\Omega_{D}} \frac{\partial}{\partial y} \varphi_{\alpha_{g}}(x, y) d(x, y) \end{split} \qquad t^{x} &= \frac{1}{c |\Omega_{D}|} \int_{\Omega_{D}} x \cdot \varphi_{\alpha_{g}}(x, y) d(x, y) \\ t^{y} &= \frac{1}{|\Omega_{D}|} \int_{\Omega_{D}} \frac{\partial}{\partial y} \varphi_{\alpha_{g}}(x, y) d(x, y) \qquad t^{y} &= \frac{1}{c |\Omega_{D}|} \int_{\Omega_{D}} y \cdot \varphi_{\alpha_{g}}(x, y) d(x, y) \end{split}$$

A Gradient-based method

Solve
$$\mathbf{A} \Phi = \boldsymbol{\varphi} \iff \begin{pmatrix} \mathbf{A}_{\alpha_1} \\ \vdots \\ \mathbf{A}_{\alpha_{G+N}} \end{pmatrix} \Phi = \begin{pmatrix} \varphi_{\alpha_1} \\ \vdots \\ \varphi_{\alpha_{G+N}} \end{pmatrix} = \boldsymbol{\varphi}$$

Approach without noise models: Minimize the least-squares functional

 $J(\mathbf{\Phi}) = \|\mathbf{A}\mathbf{\Phi} - \boldsymbol{\varphi}\|_{[L^2(\mathbf{\Omega}_D)]^{G+N}}^2 \to \min,$ $J'(\mathbf{\Phi}) = -2\mathbf{A}^* \mathbf{\Pi}(\boldsymbol{\varphi} - \mathbf{A}\boldsymbol{\Phi})$

Approach with noise models: Minimize the Tikohonov-type functional

$$J(\mathbf{\Phi}) = \|\mathbf{A}\mathbf{\Phi} - \boldsymbol{\varphi}\|_{\overline{C_{\eta}}^{-1}}^{2} + \alpha_{\Phi} \|\mathbf{\Phi}\|_{C_{\Phi}^{-1}}^{2} \to \min,$$

$$J'(\mathbf{\Phi}) = -2\mathbf{A}^{*}\mathbf{\Pi}\overline{C_{\eta}}^{-1}\mathbf{\Pi}(\boldsymbol{\varphi} - \mathbf{A}\mathbf{\Phi}) + 2\alpha_{\Phi}C_{\phi}^{-1}\mathbf{\Phi}$$

Steepest descent iteration:

Algorithm 1 Gradient-based method $\frac{\text{without noise models}}{\text{Choose } \boldsymbol{\Phi}_0.}$ for i = 1, ... do $\Phi_i = \Phi_{i-1},$ for $g = 1, \ldots, G$ do residual_g = $\varphi_{\alpha_g} - \mathbf{A}_{\alpha_g} \Phi_i$ gradient_g = $(\mathbf{A}_{\alpha_q})^* \Pi$ residual_g $\mathbf{r}_i = \mathbf{r}_i + L \cdot \mathrm{residual}_q$ $g_i = g_i + gradient_g$ end for for $g = G + 1, \ldots, G + N$ do residual_g = $\varphi_{\alpha_g} - \mathbf{A}_{\alpha_g} \Phi_i$ gradient_g = $(\mathbf{A}_{\alpha_g})^*$ residual_g $\mathbf{r}_i = \mathbf{r}_i + L \cdot \mathrm{residual}_q$ $g_i = g_i + \text{gradient}_q$ end for

Spot elongation:

SH WFS measurements from LGS are affected by spot elongation due to the non-zero thickness of the sodium layer. Depending on the laser launch position (the LGS height and the sodium layer) one can model the corresponding covariance matrix for the noise:

			1	0 0	0 7	A	
$\begin{bmatrix} x & y \end{bmatrix}$		1	8	0 0	0 6	10	
EXACT WFS data: $s_{\alpha_a} = [s_{\alpha_a}^*, s_{\alpha_a}^*]$	X	0 0	0	0 0	0 4	10	0
	1	0 0	0	0 0	0 0	, 0	0
noisy WFS data: $e^{\delta} - e^{-1/2}n$ with n white noise	0	0 0	0/		10	, 0	0
noisy wro data. $s_{\alpha_a} - s_{\alpha_a} + C_{\alpha_a} \eta$, with η while noise.	-		0	×) <	0	0
$\sum_{i=1}^{n} \frac{1}{2}$	0	0 0	0	_	1.	0	6
noisy wavefront: $\alpha^0 - \Gamma^{\dagger}(s + C^{1/2}n)$	k.	0 0	0	0 0	0 0	0	0
$1010y wavelloin. \varphi_{\alpha_a} = 1 (3\alpha_g + C_{\alpha_a} \eta)$	X	00	0	0 0	0 9	0 6	0
$\cdot \qquad \cdot \qquad$		0	0	0 0	2 9	0 0	/
covariance of noisy wavefront: $\operatorname{cov}(\varphi_{\alpha_q}^o) = \Gamma^{\dagger} C_{\alpha_q}(\Gamma^{\dagger})^T$			4	0	0 9	ł	
$() \qquad \mathbf{n}^{\dagger} \sim (\mathbf{n}^{\dagger})^{T} \qquad \overline{\mathbf{\alpha}} \qquad \mathbf{n} $							
$\operatorname{cov}(\boldsymbol{\varphi}) = \Gamma'C_{\eta}(\Gamma')^T =: C_{\eta} \text{ with } C_{\eta} = \operatorname{diag}(C_{\alpha_1}, \ldots, C_{\alpha_G}).$	W	WW.	opti	lcsin	foba	ise.c	org

References

- [1] R. Ramlau and M. Rosensteiner: An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration. Inverse Problems, 28 (2012)
- [2] M. Rosensteiner: Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition. J. Opt. Soc. Am. A, 11 (2012)
- [3] R. Ramlau, A. Obereder, M. Rosensteiner, D. Saxenhuber: Efficient iterative tip/tilt reconstruction for atmospheric tomography. Inverse Problems in Science and Engineering (2014)
- [4] R. Ramlau, D. Saxenhuber, M. Yudytskiy: Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm. Proc. SPIE 9148, Adaptive Optics Systems IV (2014)
- [5] D. Saxenhuber and R. Ramlau: A Gradient-based Method for Atmospheric Tomography. submitted

 $\mathbf{\Phi}_{i+1} = \mathbf{\Phi}_i - \tau_i J'(\mathbf{\Phi}_j)$ $\tau_i = \min_{t \in [0,\infty)} J(\mathbf{\Phi}_i - t\mathbf{d}_i)$

Simulation results

All results below were obtained for the E-ELT on the ESO end-to-end simulator, OCTOPUS.

Multi Object Adaptive Optics (MOAO) • 42m E-ELT, central obstruction • nine 84×84 SH-WFS, 10 arcmin FoV • 6 LGS (3.75 arcmin), 3 NGS (5 arcmin)• 1 ground DM, open loop control • varying photon noise, w/o spot elongation • Reference: FrIM (e.g. Tallon et al. 2007) • wavefront reconstruction: CuReD [2] • Gradient w/o noise models • 9 reconstruction layers (between 0-12km) • projection through atmosphere onto DM