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The problem of atmospheric tomography arises in ground-based tele-
scope imaging with Adaptive Optics (AO), where one aims to physi-
cally correct atmospheric turbulences via deformable mirrors (DM) in
real-time, i.e. at around 500 Hertz. The optimal shape of the DM is
determined from wavefront measurements of natural guide stars (NGS)
as well as laser guide stars (LGS) and is an ill-posed inverse problem.

Many complex AO systems, such as Multi-Conjugate Adaptive Optics
(MCAO), Laser Tomography Adaptive Optics (LTAO) or Multi-
Object Adaptive Optics (MOAO), depend on a sufficient reconstruc-
tion of the turbulence profiles within the required time frame in order to
obtain a good correction. Due to steadily growing telescope sizes, there
is a strong increase in the computational load for atmospheric recon-
struction with current methods, first and foremost the matrix-vector-
multiplication (MVM). Instead of using one big matrix-vector system,
one can decouple the problem in 3 steps:

3-step approach[1]:
Solve AO problem sequently:
1. Reconstruct incoming wavefronts from Shack-Hartmann wavefront sensor (WFS) data

2. Atmospheric tomography: Reconstruct atmosphere from wavefronts → Gradient-based method

3. Fitting step: Compute optimal mirror shape(s) from the reconstructed atmosphere

Input: Shack-Hartmann wavefront
sensor (WFS) data of guide stars in
directions αg, g = 1,...,G
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with the aperture ΩD subdivided in
sub-apertures Ωij.

Output: DM shape

In the following, we propose a Gradient-based method for the atmospheric tomography. The main goal of this
iterative approach is the comparability with the MVM in quality and a significantly lower computational cost.

LGS deficiencies

With NGS only a low sky
coverage can be reached, thus,
artificial LGS are created with

laser beacons. LGS suffer
compared to NGS from cone

effect, tip/tilt indetermination
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Tip-tilt indetermination:

• Tip/tilt components are wrongly measured in a SH WFS

• remove wrong tip/tilt from incoming LGS wavefronts

• Tip/tilt removal operator: Π = (Π, . . . , Π
︸ ︷︷ ︸

G×

, Id, . . . , Id
︸ ︷︷ ︸

N×

)

• Πϕαg
(r) = ϕαg

(r) − x · tx − y · ty

Gradient tilt:
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Spot elongation:
SH WFS measurements from LGS are affected by spot elongation due to the non-zero
thickness of the sodium layer. Depending on the laser launch position (the LGS height
and the sodium layer) one can model the corresponding covariance matrix for the noise:

exact WFS data: sαg
= [sx

αg
sy

αg
]

noisy WFS data: sδ
αg

= sαg
+ C1/2

αg
η , with η white noise.

noisy wavefront: ϕδ
αg

= Γ†(sαg
+ C1/2

αg
η)

covariance of noisy wavefront: cov(ϕδ
αg

) = Γ†Cαg
(Γ†)T

cov(ϕ) = Γ†Cη(Γ
†)T =: Cη with Cη = diag(Cα1

, . . . , CαG
). www.opticsinfobase.org
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Atmospheric Tomography

Input:
• reconstructed incoming wavefronts ϕαg

from LGS
g = 1, . . . , G and NGS n = 1, . . . , N on ΩD (aperture)

Goal:

• fast reconstruction of discretized atmosphere
Φ = (Φ(1), · · · , Φ(L))T on Ωl , l = 1, . . . , L

=⇒ ill-posed inverse problem, requires
regularization.

Statistics of the atmosphere:
To model the atmosphere, a finite number of layers l = 1, . . . , L is used. Each layer can be
described e.g. by the van Karman or the Kolmogorov turbulence model with the covariance
matrix C

(l)
φ and the c2

n-profile γl measuring the turbulence strength of layer l.

Forward operator: using geometric light propagation [1]

Aαg
:

L⊗

l=1
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Cone effect: introduce a scaling factor cl

cl :=

{

1 , for NGS

1 − hl

hLGS
, for LGS

hLGS . . . LGS height, i.e. 90km

A Gradient-based method

Solve AΦ = ϕ ⇐⇒
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Approach without noise models:
Minimize the least-squares functional

J(Φ) = ‖AΦ − ϕ‖2
[L2(ΩD)]G+N → min ,

J ′(Φ) = −2A∗Π(ϕ − AΦ)

Approach with noise models:
Minimize the Tikohonov-type functional

J(Φ) = ‖AΦ − ϕ‖2
Cη

−1 + αΦ‖Φ‖2
C−1

Φ
→ min ,

J ′(Φ) = −2A∗ΠCη
−1

Π(ϕ − AΦ) + 2αΦC−1
φ Φ

Steepest descent iteration:

Φi+1 = Φi − τiJ
′(Φj)

τi = min
t∈[0,∞)

J(Φi − tdi)

Algorithm 1 Gradient-based method
without noise models

Choose Φ0.
for i = 1, . . . do

Φi = Φi−1,
for g = 1, . . . , G do

residualg = ϕαg − AαgΦi
gradientg = (Aαg)

∗Π residualg
ri = ri + L· residualg
gi = gi + gradientg

end for
for g = G + 1, . . . , G + N do

residualg = ϕαg − AαgΦi
gradientg = (Aαg)

∗ residualg
ri = ri + L· residualg
gi = gi + gradientg

end for
stepsize = (gT

i · gi)/(rTi · ri)
Φi = Φi + stepsize · γ · gi

end for

Simulation results

All results below were obtained for the E-ELT on the ESO end-to-end simulator, OCTOPUS.
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Reference
Gradient G−tilt
Gradient Z−tilt

CuReD 20n

Grad.method per it (16L − 4)n

Projection step 7(L − 1)n
Computational cost per process

Multi Object Adaptive Optics (MOAO)
• 42m E-ELT, central obstruction

• nine 84 × 84 SH-WFS, 10 arcmin FoV

• 6 LGS (3.75 arcmin), 3 NGS (5 arcmin)

• 1 ground DM, open loop control

• varying photon noise, w/o spot elongation

• Reference: FrIM (e.g. Tallon et al. 2007)

• wavefront reconstruction: CuReD [2]

• Gradient w/o noise models

• 9 reconstruction layers (between 0-12km)

• projection through atmosphere onto DM


